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Abstract. In this paper, for solving the finite-dimensional variational inequality problem

ðx� x�ÞTFðx�ÞP0; 8x 2 X;

where F is a Cr ðr > 1Þ mapping from X to Rn, X ¼ fx 2 Rn : gðxÞO0g is nonempty (not
necessarily bounded) and gðxÞ :Rn ! Rm is a convex Crþ1 mapping, a homotopy method is

presented. Under various conditions, existence and convergence of a smooth homotopy
path from almost any interior initial point in X to a solution of the variational inequality
problem is proven. It leads to an implementable and globally convergent algorithm and

gives a new and constructive proof of existence of solution.
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1. Introduction

Solving a finite-dimensional variational inequality is to find a vector
x� 2 X � Rn such that

ðx� x�ÞTFðx�ÞP0; 8x 2 X; ð1Þ
where X is a nonempty, closed and convex subset of Rn and F is a map-
ping from Rn to itself, denoted by VI(X;F ).
The variational inequality problem (VIP) has had many successful prac-

tical applications in the last three decades (see, e.g. [1–4]). It has been used
to formulate and investigate equilibrium models arising in economics,
transportation, regional science and operations research. So far, a large
number of existence conditions have been developed in the literature (e.g.
[5–10]). Harker and Pang [11, 12] gave excellent surveys of theories, meth-
ods and applications of VIPs.
The history of algorithms for solving the finite-dimensional variational

inequality is relatively short. Major algorithms such as Newton’s method are
locally convergent. However, generally, it is difficult to know a good initial
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point hence locally convergent algorithms can not be applied. Thus it is nec-
essary to construct globally convergent algorithms. Only for FðxÞ with very
special properties some globally convergent algorithms have been given.
Homotopy method (see, [13, 14] for introductions) which has paid much

attention since 1970’s is a class of important globally convergent method.
Many homotopy method have been given to constructively prove existence
of solution and to serve as implementable algorithms for nonlinear sys-
tems, fixed point problems, nonlinear programming and complementarity
problems.
Recently, utilizing the combined homotopy (see [15, 16]), Lin and Li [17]

gave a homotopy method for VIP in a bounded set X. It was also conjec-
tured in [17] that the result can be generalized to a VIP in an unbounded
set, however, up till now, no such result has been given.
In this paper, we will discuss about homotopy methods for VIPs in an

unbounded set. Under conditions which are commonly used in the literature,
a smooth path from a given interior point of X to a solution of VIP will be
proven to exist. This will give constructive proof of existence of solution and
lead to an implementable globally convergent algorithm to the VIP.
In Section 2, we formulate an equivalent form of VIP (K-K-T condition)

and list some lemmas from differential topology which will be used in this
paper. In Section 3, we give the homotopy and prove in detail existence of
the smooth path from a given point in X to a solution of the VIP under a
weak condition. Then we give some corollaries, with only key points of
proof, to show that similar results can obtained for VIPs under many other
commonly used conditions.

2. Preliminary Lemmas

In this paper, we restrict the feasible set X to as follows:
X ¼ fx 2 Rn : gðxÞO0g; ð2Þ

where gðxÞ ¼ ðg1ðxÞ; . . . ; gmðxÞÞT and gi’s are assumed to be convex.
Let X 0 be the strictly feasible set of (1), i.e.,

X 0 ¼ fx 2 Rn : gðxÞ < 0; i ¼ 1; . . . ;mg:
We assume that the Slater constraint qualification holds for X, i.e., there

exists a point x0 2 X such that gðx0Þ < 0:
Let Rm

þ and Rm
þþ denote the nonnegative and positive orthant of Rm,

oX ¼ X� X 0. Let
IðxÞ ¼ fi 2 f1; . . . ;mg: giðxÞ ¼ 0g ð3Þ

be the active index set at x 2 X.
In [17], a homotopy method for VI(X;F ) with bounded X was given. In

this paper, we will discuss VI(X;F ) with X which is not necessarily
bounded.
The following lemma formulates a equivalent form of VI(X,F).
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LEMMA 2.1 (See [11]). Let F be a continuous mapping from Rn to itself,
X be defined by ð2Þ and functions giðxÞ; i ¼ 1; . . . ;m are twice continuously
differentiable and convex. Then x� 2 X is a solution to VI(X;F) if, and only
if, there exists a vectors k� 2 Rm

þ such that

Fðx�Þ þ rgðx�Þk� ¼ 0;

k�i giðx�Þ ¼ 0; i ¼ 1; . . . ;m:
ð4Þ

The following lemmas from differential topology will be used in the next
section. At first, let U � Rn be an open set, let / : U! Rp be a Ca

(a > maxf0; n� pg) mapping, we say that y 2 Rp is a regular value for /, if

Rang½o/ðxÞ=ox� ¼ Rp; 8x 2 /�1ðyÞ:

LEMMA 2.2 (See [13]). Let V � Rn, U � Rm be open sets, and let / : V�
U! Rk be a Ca mapping, where a > maxf0;m� kg. If 0 2 Rk is a regular
value of /, then for almost all a 2 V, 0 is a regular value of /a ¼ Fða; �Þ.

LEMMA 2.3 (See [18]). Let / : U 2 Rn ! Rp be a Ca ða > maxf0; n� pgÞ
mapping. If 0 is a regular value of /, then /�1ð0Þ consists of some ðn� pÞ-
dimensional Ca manifolds.

LEMMA 2.4 (See [18]). A one-dimensional smooth manifold is diffeomor-
phic to a unit circle or a unit interval.

3. Main Results

THEOREM 3.1. Suppose that
(A) giðxÞ, i ¼ 1; . . . ;m are convex Crþ1 ðr > 1Þ functions and X 0 is non-

empty.
(B) 8x 2 oX, frgiðxÞ : i 2 I0ðxÞg is linear independent.

Let F :X! Rm be a Cr mapping satisfying the following condition
(C) There exists some z0 2 X such that the set

Xðz0Þ ¼ fx 2 X : ðx� z0ÞTFðxÞ < 0g ð5Þ
is bounded, i.e., there exists an M > 0, such that 8x 2 Xðz0Þ, kxkOM.
We have the following results:
(1) There exists an x� 2 X, such that

ðx� x�ÞTFðx�ÞP0; 8x 2 X;

(2) For almost all x0 2 X 0, y0 2 Rm
þþ, the homotopy equation

Hðw0;w; lÞ ¼ ð1� lÞðFðxÞ þ rgðxÞyÞ þ lðx� x0Þ
YgðxÞ � lY0gðx0Þ

� �
¼ 0; ð6Þ

where w ¼ ðx; yÞ, w0 ¼ ðx0; y0Þ, gðxÞ ¼ ðg1ðxÞ; . . . ; gmðxÞÞT, y ¼ ðy1;
. . . ; ymÞT, Y ¼ diagðyÞ, rgðxÞ ¼ ðrg1ðxÞ; . . . ;rgmðxÞÞ, determines a smooth

HOMOTOPY METHODS FOR SOLVING VARIATIONAL INEQUALITIES 123



curve Cw0 � X 0 � Rm
þþ � ð0; 1� starting from ðw0; 1Þ. As l! 0, the limit set

T � X� Rm
þ � f0g of Cw0 is nonempty and the x-component of any point in

T is a solution of the VI(X;F).
First of all, we prove the following three lemmas. For a given

w0 2 X 0 � Rm
þþ, rewrite Hðw0;w;lÞ in (6) as Hw0ðw;lÞ. Set

H�1w0 ð0Þ ¼ fðw; lÞ 2 X 0 � Rm
þþ � ð0; 1� :Hw0ðw; lÞ ¼ 0g ð7Þ

LEMMA 3.1. If the conditions ðAÞ and ðBÞ of Theorem 3.1 hold, then for
almost all w0 2 X 0 � Rm

þþ, 0 is a regular value of Hw0 :X 0 � Rm
þþ � ð0; 1� !

Rmþn and H�1w0 ð0Þ consists of some smooth curves. Among them, a smooth

curve Cw0 starts from ðw0; 1Þ.

Proof. 8w0 2 X 0 � Rm
þþ and l 2 ð0; 1�

oHðw0;w;lÞ=ow0 ¼ �lI 0
�lY0rgðx0ÞT �lGðx0Þ

� �
;

where I is the identical matrix and Gðx0Þ ¼ diagðgðx0ÞÞ. By a simple com-
putation:

joHðw0;w; lÞ=ow0j ¼ ð�1Þnþmlmþn
Ym
i¼1

giðx0Þ:

From x0 2 X 0, we have giðxÞ < 0, and hence

joHðw0;w; lÞ=ow0j 6¼ 0:

Thus, 0 is a regular value of Hðw0;w;lÞ. By Lemma 2.2 and Lemma 2.3,
for almost all w0 2 X 0 � Rm

þþ, 0 is a regular value of Hw0ðw; lÞ and H�1
w0 ð0Þ

consists of some smooth curves. And, because

Hw0ðw0; 1Þ ¼ 0;

there must be a smooth curve Cw0 in H�1
w0 ð0Þ starting from ðw0; 1Þ. (

LEMMA 3.2. Suppose that the conditions of Theorem 3.1 hold. For a given
w0 2 X 0 � Rm

þþ, if 0 is a regular value of Hw0 , then the projection of the
smooth curve Cw0 � H�1

w0 ð0Þ ¼ fðw; lÞ 2 X 0 � Rm
þþ � ð0; 1� :Hw0ðw; lÞ ¼ 0g

on the x-plane is bounded.
Proof. If there exists a sequence ðxk; yk;lkÞ 2 Cw0 , such that kxkk ! 1.
From the first equality of (6), we have:

ð1� lkÞðFðxkÞ þ rgðxkÞykÞ þ lkðxk � x0Þ ¼ 0: ð8Þ
Since gðxÞ is convex, the following inequalities hold:

gðx0ÞTPgðxÞT þ ðx0 � xÞTrgðxÞ; 8x 2 X;

i.e.,

ðx0 � xÞTrgðxÞOgðx0ÞT � gðxÞT: ð9Þ
By (8) and (9), we have

ð1�lkÞððxk� z0ÞTFðxkÞþðxk� z0ÞTrgðxkÞykÞþlkðxk� z0ÞTðxk�x0Þ¼ 0;

hence,
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ð1�lkÞðxk� z0ÞTFðxkÞ

¼�lkðxk� z0ÞTðxk�x0Þ� ð1�lkÞðxk� z0ÞTrgðxkÞyk

¼�lkkxk�x0k2þlkðxk�x0ÞTðz0�x0Þþ ð1�lkÞðz0�xkÞrgðxkÞyk

O� 1

2
lkðkxk�x0k2�kz0�x0k2Þþ ð1�lkÞðgðz0Þ� gðxkÞÞTyk:

From the second equality of (6) and gðz0ÞO0, yk > 0, we have

ð1�lkÞðxk� z0ÞTFðxkÞO�1

2
lkðkxk�x0k2�kz0�x0k2�ð1�lkÞgðx0ÞTy0Þ:

ð10Þ
If kxkk ! 1, because kz0 � x0k2, gðx0Þ and y0 are constant and 1� lk is

bounded, there exists k such that kxkk >M; lk 2 ð0; 1�, and the right-hand
side of (10) is strictly smaller than 0, i.e.,

ðxk � z0ÞTFðxkÞ < 0:

This contradicts with the condition (C). So fxkg is bounded. (

LEMMA 3.3. Suppose that the conditions of Theorem 3.1 hold. For a given
w0 2 X 0 � Rm

þþ, if 0 is a regular value of Hw0 , then Cw0 is a bounded curve
in X 0 � Rm

þþ � ð0; 1�.

Proof. If Cw0 � X 0 � Rm
þþ � ð0; 1� is an unbounded curve, then because

we have proven in Lemma 3.2 that the projection of the smooth curve Cw0

on the x-plane is bounded, there exists a sequence of points
fðxk; yk; lkÞg � Cw0 and a nonempty index set I� � f1; . . . ;mg, such that
xk ! x�, lk ! l�, y

k
i ! y�i for i j2 I� and yki ! þ1 for i 2 I�.

From the second equality of (6)

YkgðxkÞ ¼ lkY
0gðx0Þ; ð11Þ

we have
I� � Iðx�Þ:

(i) When l� ¼ 1, rewrite (8) as

X
i2Iðx�Þ

ð1�lkÞrgiðxkÞyki þxk�x0¼ð1�lkÞ �
X

i62Iðx�Þ
ykirgiðxkÞ�FðxkÞþxk�x�

2
4

3
5

ð12Þ
Since fxkg and fyki g, i j2Iðx�Þ are bounded, as k!1, (12) becomes

lim
X

i2Iðx�Þ
ð1� lkÞykirgiðxkÞ þ xk � x0

2
4

3
5 ¼ 0:

Using xk ! x�, as k!1, we have
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x0 ¼ x� þ
X
i2Iðx�Þ

lim ð1� lkÞyki
� �

rgiðx�Þ: ð13Þ

Because I� and hence Iðx�Þ is nonempty, we know that x� 2 oX. Since
ð1� lkÞykP0,

x� þ
X

i2Iðx�Þ
limð1� lkÞyki
� �

rgiðx�Þ

is in the translated normal cone of X at x�. Because x0 is an interior point
and X is convex, (13) is impossible.
(ii) When l� < 1, rewrite (9) as

ð1�lkÞðFðxkÞþ
X
i2=I�
rgiðxkÞyki Þþlkðxk�x0Þþð1�lkÞ

X
i2I�
rgiðxkÞyki ¼ 0:

ð14Þ
From yki ! þ1 for i 2 I� and condition (B), it follows that the third part
in left hand side of (14) tends to infinity, while the first and second parts
are bounded. This is also impossible. Thus, Cw0 is bounded. (

Proof of Theorem 3.1. By Lemma 2.4, Cw0 must be diffeomorphic to a unit
circle or a unit interval (0,1].
Since the matrix

oHðw0;w;lÞ=ow0 ¼ � I 0
Y0rgðx0ÞT Gðx0Þ

� �

is nonsingular, Cw0 is diffeomorphic to (0,1]. As l! 0, the limit points of
Cw0 belong to oðX� Rm

þ � ð0; 1�Þ. Let ðw�; l�Þ be a limit points of Cw0 , then
only the following four cases are possible:
(i) ðw�; l�Þ 2 X 0 � Rm

þþ � f1g
(ii) ðw�;l�Þ 2 oðX� Rm

þþÞ � f1g
(iii) ðw�;l�Þ 2 oðX� Rm

þþÞ � ð0; 1Þ
(iv) ðw�;l�Þ 2 X� Rm

þþ � f0g
Since the equation Hw0ðw0; 1Þ ¼ 0 has only one solution ðw0; 1Þ in

X 0 � Rm
þþ � f1g, case (i) is impossible.

In cases (ii) and (iii), there must exist a sequence of fðxk; yk;lkÞg � Cw0

such that kxkk ! 1 or, giðxkÞ ! 0 for some 1OiOm and kykk ! 1. This
contradicts with Lemma 3.2 or 3.3.
As a conclusion, case (iv) is the only possible case, and hence ðx�; y�Þ is

a solution of (4). By Lemma 2.1, x� is a solution of the VI(X;F). (

REMARK 3.1. If X is a bounded set, the condition (C) of Theorem 3.1
holds obviously. Hence, the result of Theorem 3.1 implies the one in [17].
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DEFINITION 3.1. A mapping F :Rn ! Rn is said to be uniform diago-
nally dominant with respect to X if, for any distinct x, y in X and index i
with jxi � yij ¼ kx� yk1, there exists a positive scalar c such that

ðxi � yiÞðFiðxÞ � FiðyÞÞPckx� yk21; ð15Þ
where k � k1 denote the max norm.

DEFINITION 3.2. The mapping F :Rn ! Rn is said to be

(a) pseudo-monotone over X if

FðyÞTðx� yÞP0 implies FðxÞTðx� yÞP0; 8x; y 2 X;

(b) uniform P-function on X if there exists a scalar a > 0 such that

max
1OiOn

ðFiðxÞ � FiðyÞÞTðx� yÞPakx� yk22; 8x; y 2 X; x 6¼ y; ð16Þ

(c) coercive with respect to X if there exists a vector x0 2 X such that

lim
x2X;kxk!1

ðFðxÞ � Fðx0ÞÞTðx� x0Þ
kxk ¼ þ1; ð17Þ

where k � k denotes any vector norm in Rn.
(d) strongly monotone over X if there exists an a > 0 such that

ðFðxÞ � FðyÞÞTðx� yÞPakx� yk2; 8x; y 2 X: ð18Þ

DEFINITION 3.3.

(a) A mapping F :Rn ! Rn is said to be proper at the point

x0 2 X if the set

Lðx0;XÞ ¼ fx 2 X : ðx� x0ÞTFðx0ÞO0g
is bounded.

(b) A mapping F :Rn ! Rn is said to be weakly proper at the point
x0 2 X if, for each sequence fxkg � X with the property kxkk ! 1
as k!1, there exists some k such that

Fðx0ÞTðxk � x0ÞP0 and kxkk > kx0k:

LEMMA 3.4 (See [19]). Let g :Rn ! Rm be defined as

gðxÞ ¼ ðg1ðxk1Þ; . . . ; gmðxkmÞÞ
T: ð19Þ

Then, for any k 2 Rm, z 2 Rn and x 2 Rn, we have

zpðrgðxÞkÞp ¼
0; if p 6¼ ki, ði ¼ 1; . . . ;mÞ
kiðrgðxÞzÞi; if p ¼ ki,

�

for p ¼ 1; . . . ; n.

COROLLARY 3.1. Suppose that the conditions (A) and (B) of Theorem 3.1
hold. Let F :X! Rn be a Cr mapping, X be a rectangular set in Rn and one
of the following conditions holds:
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(a) F is a uniform diagonally dominant function with respect to X.
(b) F is a uniform P-function with respect to X and 0 2 X.

Then the conclusion of the Theorem 3.1 holds.

Proof. Since each rectangular set can be represented in the form of (2) with
gðxÞ in the form of (19), without loss of generality we assume that X is
given by (2) and (19).
(a) If we can prove that the projection of the smooth curve

Cw0 � H�1
w0 ð0Þ on the x-plane is bounded under the supposed conditions,

then the desired result can be shown by the similar argument as the proof
of Theorem 3.1.
Suppose that there exists a sequence of xk in the projection of the

smooth curve Cw0 on the x-plane, such that kxkk ! 1.
By (9) and the second equality of (6), we have

ðykÞi½rgðxkÞ
Tðxk � x0Þ�iPðykÞiðgiðxkÞ � giðx0ÞÞ

Plkðy0Þigiðx0Þ;
ð20Þ

for all i ¼ 1; . . . ;m.
By (20) and Lemma 3.4, we deduce that

ðxk � yÞi½rgðxkÞyk�iPlkðy0Þigiðx0Þ: ð21Þ
Since fxkg is an infinite sequence, there exists a subsequence fxkig and
some fixed index l 2 f1; . . . ; mg, such that,

jxkil � ylj ¼ kxki � yk1; 8ki:
Noticing that F is a uniform diagonally dominant function, we have

ðxki � yÞTðFlðxkiÞ � FlðyÞÞPckxki � yk21; 8ki: ð22Þ
By using the first equality of (6) and (21), we have

ð1�lkiÞ½FlðxkiÞ�Flðx0Þ�ðxki �x0Þl
¼ð1�lkiÞFlðxkiÞðxki �x0Þl�ð1�lkiÞFlðx0Þðxki �x0Þl
¼�ð1�lkiÞ½rgðx

kiÞTyki �lðxki �x0Þl�lkiðx
ki �x0Þ2l �ð1�lkiÞFlðx0Þðxki �x0Þl

O�lkið1�lkiÞðy
0Þlglðx0Þ�lkiðx

ki�x0Þ2l �ð1�lkiÞFlðx0Þðxki �x0Þl:
Combining (22) and the above inequality yields

ð1� lkiÞckx
ki � x0k21

O� ð1� lkiÞlkiðy
0Þlglðx0Þ � lkiðx

ki � x0Þ2l � ð1� lkiÞFlðx0Þðxki � x0Þl:
When lki ¼ 1, we have

ðxki � x0Þ2l O0;

since kxkik ! 1, this is impossible.
When 0Olki < 1, we have

cO½�lkiðy
0Þlglðx0Þ � Flðx0Þðxki � x0Þl �

lki

1� lki

ðxki � x0Þ2l �=kxki � x0k21:
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Since kxkik ! 1, the above inequality can not hold, we obtain a contra-
diction. Thus, we obtain that the projection of the smooth curve Cw0 on
the x-plane is bounded. Hence, following the similar argument as the proof
of Theorem 3.1, we can obtain the desired result.
(b) Suppose that there exists a sequence fxkig in the projection of the

smooth curve Cw0 on the x-plane, such that kxkik ! 1. Let y ¼ 0, there is
a subsequence fxkig and some fixed index l, such that

½FlðxkiÞ � Flð0Þ�xkil ¼ max
1OiOn

½FiðxkiÞ � Flðx0Þ�xkii ; 8ki:

Since FðxÞ is a uniform P-function, we have

½FlðxkiÞ � Flð0Þ�xkil Pckxkik2:
Then, the rest part of the proof is the same as in (a). (

COROLLARY 3.2. Assume that the conditions (A) and (B) of Theorem 3.1
hold. F is a Cr mapping and is coercive with respect to X, then the conclusion
of Theorem 3.1 holds.

Proof. Let x0 2 X satisfy (17). Suppose that there exists a sequence fxkg in
the projection of the smooth curve Cw0 on the x-plane, such that
kxkk ! 1. By the first equality of (6), we have

ð1� lkÞ½ðxk � x0ÞTFðxkÞ þ ðxk � x0ÞTrgðxkÞyk� þ lkkxk � x0k2 ¼ 0:

ð23Þ
For k large enough, lk 6¼ 1, otherwise, by (23), kxk � x0k2 ¼ 0. This is
impossible, so we have

ðxk � x0ÞTFðxkÞ þ ðxk � x0ÞTrgðxkÞykO0: ð24Þ
By (24), (9) and the second equality of (6), noticing that gðx0ÞO0, y0P0

and ykP0, we have

ðxk � x0ÞTFðxkÞ
Oðx0 � xkÞTrgðxkÞyk

O½gðx0Þ � gðxkÞ�Tyk

O� lkgðx0ÞTy0:
Then, we have

ðxk � x0ÞTðFðxkÞ � Fðx0ÞÞ=kxk � x0k
O� ðlkgðx0ÞTy0 þ ðxk � x0ÞTFðx0ÞÞ=kxk � x0k:

ð25Þ

Since gðx0Þ and Fðx0Þ are fixed, lk 2 ð0; 1� and kxkk ! 1 (as k!1), the
right hand side of (25) is bounded and left hand side of it goes to þ1
from the coercivity of FðxÞ, which is impossible. Thus, the projection of
the smooth curve Cw0 on the x-plane is bounded. The rest part of the proof
is similar as that of Theorem 3.1. (
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COROLLARY 3.3. Assume that the conditions ðAÞ and ðBÞ of Theorem 3.1
hold. F is a Cr mapping that is strongly monotone over X. Then the conclu-
sion of Theorem 3.1 holds.

Proof. If F is strongly monotone over X, then F is coercive with respect to
X. By corollary 3.2, we can obtain our desired results. (

COROLLARY 3.4. Suppose that the conditions (A) and (B) hold. Let F be
a pseudo-monotone Cr mapping from X into Rn. If there exists a point
x0 2 X such that F is weakly proper at x0, then the conclusion of Theorem
3.1 holds.
Proof. Since F is weakly proper at x0, for each sequence fxkg � X with the
property kxkk ! 1 as k!1, there exists some k such that kxkk > kx0k
and

ðxk � x0ÞTFðx0ÞP0

By the pseudo-monotonicity of F, we have

ðxk � x0ÞTFðxkÞP0;

from which we can prove the conclusion of the corollary similarly with the
proofs of Lemma 3.2, 3.3 and Theorem 3.1. (
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